
J. Technol. Manag. Innov. 2008, Volume 3, Special Issue 1

18

Received July 1, 2008/ Accepted August 1, 2008

AN EVALUATION APPROACH BASED ON THE PROBLEM-BASED

LEARNING IN A SOFTWARE ENGINEERING MASTER COURSE

Ana Paula Cavalcanti1,2, Simone Santos1,2, Maria da Conceição Moraes1,2, Jones Albuquerque1,2, Silvio Meira1,2

1C.E.S.A.R.edu – Educational Unit of Recife Center for Advanced Studies and Systems

Rua Bione, nº 220, Cais do Apolo 50.0303-90, Recife - PE, Brazil –Phone number: +55 (81) 3425 – 4700

2CIn - Informatics Center from Federal University of Pernambuco (UFPE)

Caixa Postal 7851, Cidade Universitária – 50.732-970 – Recife – PE – Brazil –Phone number: +55 (81) 2126 - 8430

{ana.paula, simone.santos, ceca.moraes, jones.albuquerque, silvio}@cesar.org.br

Abstract

The effectiveness of a Master’s Program Course can only be appraised with the support of an efficient and accurate
evaluation program. Taking the Problem Based Learning, as a reference to implement practical and real problems on a class
of master students, and the traditional methods that focuses on formal exams as methodology, a method for evaluation was
defined to contemplate both scopes. Nevertheless, such method was first applied in a case study of CESAR.edu Master’s
Program Class and is being continuously used and improved in order to support the students learning process, providing
quantitative results so that they can evaluate and progress their performance along the course. Software Engineering is the
core discipline that guides the program, and the implementation of Software Factories is the mean to provide the Problem
Based structure in the context of a masters program.

Key words: Method Evaluation, Problem Based Learning, Software Engineering, Software Factories.

J. Technol. Manag. Innov. 2008, Volume 3, Special Issue 1

19

1. Introduction

The ICT industry is emerging as an exciting and
challenging environment – flexible and dynamic. These
characteristics are demanded for ICT professionals,
particularly software engineers, who should not only
understand the technology, but also a wide vision of the
problems, business understanding, entrepreneurship
background and interpersonal skills, which are related to
the practical experience of software engineering, according
to Santos et al (2007).

Within this context, the term “Software
Engineering” was originated in 1965 but first come into
currency in 1967 when study group on Computer Science
of the NATO Science Committee called for an international
conference on the subject. As Brian Randell and Peter Naur
pointed out in the introduction to their edition of the
proceedings, “The phrase ‘software engineering‘ was
deliberately chosen as being provocative, in implying the
need for software manufacture to be based on the types of
theoretical foundations and practical disciplines, that are
traditional in the established branches of engineering.”,
supported by the work of Mahoney (1990). This sentence
opens several areas of potential disagreement. Just what are
the “types of theoretical foundations and practical
disciplines that are traditional in the established branches of
engineering”? What would their counterparts look like for
software engineering? What role does engineering play in
manufacture? Could one assign such a role to software
engineering? Can software be manufactured? Those
questions had no definitive answers in the conference
proceedings and among the future Software Engineers.

Studies about the goals of higher education have
consistently linked them to the students’ future professional
careers (Tynälä, 1999), integrating theory with practice into
the curriculum, promoting the students’ acquisition of
specific and general knowledge, both applied to solve real
problems. In this context, the PBL (Problem Based
Learning) method (Savery et al, 1995) has been applied in a
master course in software engineering to improve the
effectiveness of learning, promoting the ability of students
to work together to solve problems. The students are
divided into working groups or software factories, and
every factory is supposed to resolve a real problem of a
client.

PBL in Software Engineering is seen as a
methodology that builds real software factories. In this way,
students are exposed to real, team oriented, and distributed
development organization staffed and managed by
themselves under the guidance of faculty. Several students
are professional developers, certified programmers and
work in industry, too. These courses are hands-on courses
that require student participation in one of the factories
defined and due to a complex organization of factories and
process, a detailed method of evaluation is required.

This work discusses the evaluation method of real
software factories composed by students and, as a result of
a real life experiment, also points to a number of lessons
learned, which can very likely be replicated within similar
contexts.

Therefore, the objective of the discussion
presented in this work is to analyze traditional evaluation
methods available on the literature and present the method
evaluation defined and its application, in the context of a
software engineering master. In addition, it discusses the
correlation that such process makes with the traditional
evaluation methods and analyzes the results achieved in the
application of such process in a class of students.

This paper is organized as it follows: Section 2
presents a bibliographical review on evaluation principals
and concepts, followed by the explanation of the Master’s
Course Program structure on Section 3. Section 4 describes
the evaluation approach defined for this context, Section 5
presents the mapping between the conceptual approach and
its application to the program reality and Section 6 presents
the case studies results. Finally, the concluding remarks and
future works are presented on Section 7.

2. Assessment and Evaluation Principles and

Concepts

The Problem-Based Learning – PBL (Savery et al,
1995) is frequently a difficult culture for new students, due
to its characteristic of being an unusual learning paradigm.
The educators also face difficulties emerging from the use
of PBL techniques in their classes. Besides the critical
challenge of finding and dealing with a real problem,
educators have to deal with the decision on how to evaluate
the technique’s effectiveness and how to appraise whether
students have met the overall learning objectives for the
course.

The traditional evaluation methods based solely on
individual examinations have little contributions in truly
assessing a student’s understanding and their practical
experiences. In fact, students are well tested on individual
examinations for discipline-specific content knowledge, but
the group process skills needs to be improved, focusing on
the areas of collaboration, communication, and critical
reasoning to solve problems. The core PBL method is
mainly concerned in assessing the practical area of the
learning experience.

To define an effective evaluation model, in the
context of a master’s course program in software
engineering, three aspects may be considered and analyzed:
i) the principles to useful assessment (Waters &
McCracken, 1997); ii) the different kinds of evaluation
(Westat, 2002) and the profile of adult learners, which are
detailed in the following Sections.

J. Technol. Manag. Innov. 2008, Volume 3, Special Issue 1

20

2.1 The Principles to Useful Assessment

− In (Waters & McCracken, 1997), three guiding
assessment principles are indentified:

− Content: the assessment may reflect which are the
most important topics for students to learn;

− Learning: the assessment enhances the learning and
supports the instructional practice and;

− Equity: the assessment supports the learning
opportunity for every student.

The PBL method provides a multidisciplinary
approach for the solution of problems. Particularly, on
software development projects, where different technical
skills in solving a progressive problem are needed, the PBL
application follows a specific practice: it begins with a
general description of a system requirement and is
developed to a specific and detailed system architecture and
implementation. In this context, to know how to apply a
concept of a user’s requirements discipline to solve a
problem of a software factory allow the students to pass
through the true understanding and critical reasoning rather
than solely memorization. The concept principle
accentuates that the assessments should never be trivialized
for the convenience of judgment, but rather should
emphasize problem solving, thinking and reasoning skills
(Sharma, 2002).

The learning principle emphasizes that the
assessment should be continued in the the learning process
and may not be perceived as an isolated activity. In the
software factory context, this means that it is necessary to
manage and evaluate all software development processes,
including artifacts production, product delivery, project
schedule, project changes and planning, correcting and
giving feedback to the development team along the
software development. This methodology is focused on the
constant monitoring and feedback of the software factories
work, and the implementation of diverse kinds of
evaluation in order to explore different aspects of the
software development cycle.

With respect to the equity principle, the master
course implements a well defined pedagogical methodology
which includes individual and collective evaluation. The
last one is focused on obtaining the overall result of each
software factory and it is conducted by a monitor, with the
roles of the monitoring and controlling the software factory
works.

Finally, the in the proposed approach, the
assessment and evaluation process are considered as part of
the learning process.

2.2 The different kinds of evaluation

The National Science Foundation – NSF (Westat,

2002) outlines two main types of evaluation: formative and
summative. The purpose of a formative evaluation is to

assess initial and ongoing project activities and the
summative evaluation assesses the quality and impact of a
fully implemented project. In the others words, as said in
the handbook (Westat, 2002), “When the cook tastes the
soup, that’s formative; When the guest taste the soup, that’s
summative”.

This article proposes a combination of the two
main methods of evaluation: formative and summative. On
the formative perspective, the purpose is to execute a
“process evaluation”, investigating whether the project is
being conducted as planned, assuring that the program and
its components are beeing executed and, if they are
operating according to the proposed plan. In this step, the
evaluation is an early check done by the project staff, or the
internal evaluator. A progressive evaluation is also
implemented with the responsibility to collect information
to determine the impact of the activities and strategies on
participants, analyzing the alignment among members of
each team and their individual performance from the
perspectives of the members of the team including his/her
own viewpoint.

On the summative perspective, information about
outcomes and related processes, strategies, and activities is
collected. This evaluation is checked by an external
monitor. In the proposed approach, these tasks are executed
by the project client or any other relevant stakeholder of the
software factories. Usually this type of evaluation is needed
for decision making, which may result on a roadmap
definition of the project, leading to the status: “project can
be continued”, “modify and try again” and “discontinue the
project”, depending of the result of evaluation. This kind of
evaluation reflects the market judgment, very usual in real
world projects, where the client is focused on practical and
clear results for his/her business. Therefore, it is fundament
for the entire assessment and evaluation process.

2.3 Profile of adult learners

Considering the human aspects of learning, in

some important tracks of how to lead the evaluation are
commented in the context of adult’s learning, which is
totally aligned with the PBL approach. First, if the adults
have a more significant learning when they are inserted in
real life situations and its consequent experiences, then the
evaluation could be a link between the contents and the real
world situations. Second, if the adults are motivated to
advance in the learning with rapid answers about their
performance, the evaluation could provide quick feedbacks
for the student. And finally, if the adult learning is more
significant when he/she feels as part of a process, then the
evaluation will be able to assist with activities in group,
socialization of team members, among others.

J. Technol. Manag. Innov. 2008, Volume 3, Special Issue 1

21

3. Master Course Structure

The master program was conceived to make use of
the Problem Based Learning (Waters, 1997) methodology,
in the context of Software Engineering discipline. Such
discipline is the focus of the master’s course where the real
application of PBL can be achieved through the
implementation of software factories: taking real problems
faced by today’s software industry, guiding teams to
implement software factories to support the solution of such
problems.

Within this context, the program is organized in
eight disciplines, and each one is divided into three
modules: Basic, Intermediate, and Professional. The
disciplines are structured with the content to support the
software factories problem resolution, and they are based
on the areas of SWEBOK (SWEBOK, 2004), which is the
reference to define the disciplines of the course. The
disciplines of the master course are:
− Software Factories;
− Application and User Interface Requirements;
− Project Management;
− Architecture Oriented Development;
− Reuse Engineer;
− Technology to System Interoperability;
− Verification, Validation and Deployment of Systems.

The overall program was designed to display
weekly modules of each disciplined, where there are 15
hours of classes, 12 hours of guided practices and an exam
by the end of the weak. The hours of practices are used to
help students implement the theory, presented during
classed, on their real problem faced by the software
factories and, therefore, there are activity monitors to give
support on the execution of the activities.

Within this context, the structure of the course is
supported by the following roles:
− Content Professor: is responsible to select the content

that will be present on a discipline and to
chronologically organize its presentation. He is also
responsible to guide the Tutor Professors on the
material to be used during the classes.

− Tutor Professor: is responsible to teach the planned
program, coordinate academic activities, act as a
consultant in the specified discipline context,
systematically asses students, and to provide, for the
Software Factory Monitors, information about the
practices required during disciplines.

− Advisor: is responsible to provide orientation and
support on the students’ scientific and academic
activities and systematically assess and evaluate the
work being developed.

− Activity Monitor: is responsible to track the execution
of the discipline academic activities, guiding the

execution of any activities demanded by the Tutor
Professor, and maintain the discipline site updated.

− Software Factory Monitor: is responsible to track the
development of software factories, by conducting the
process of collective evaluation, which will be
described in details on the Section 4.

− Client: demands the projects to the software factories,
whose main activity is to categorize the demand in
terms of a RFP – Request for Proposal. The client must
be available to interact and track software factories
according to the project being develop. The client is
also responsible to answer the “client satisfaction
evaluation”, which is part of the evaluation method of
the factories.

− Students: executes all activities.
The program is organized into 12 moths, and its

structure is dived into two stages: software engineering
practice and applied research. The first stage is when the
students are required to set up a software factory, and in
order to realize this, they are organized in groups. Each
factory is responsible to solve a real problem, usually
presented by the industry and partners, where they formally
present a real necessity. The course monitors, then, forms a
pool of projects and each software factory deliver a request
for proposal. Each project, submitted by the clients, must be
compliant to a set of requirements, according to what is
described bellow:

1. Innovation;
2. Relevance to industry;
3. Applied business model; and
4. Process required for its development.

The second stage of applied research is when
students work individually to evolve a practical study as
part of the master’s degree dissertation, guided by a Tutor
Professor. During this process, students are required to
follow a tight schedule in order to prepare his/her final
work.

Therefore, the structure defined on this section is
used as a basis to implement the master course evaluation
method, which will be described in details on the next
Section.

4. An Evaluation Method Proposal

The master’s program evaluation was conceived to
contemplate both practice and theory disciplines, but giving
a greater weight on practical activities developed by the
group. The objectives of the applied evaluation method,
which was conceived based on the conceptual approach of
PBL (Waters, 1997), described on Section 2, are:
− To provide a diagnostic tool to ensure students are

progressing adequately towards achieving the desired
learning goals;

J. Technol. Manag. Innov. 2008, Volume 3, Special Issue 1

22

− To provide a multidisciplinary approach to collectively
assess students;

− To set up an assessment process as part of the learning
practice;

− To create an assessment process that can be repeatable
over time which independent on the context and given
the same variables, they should produce equivalent
results; and

− To provide students a feedback of their evolution in a
fair and objective manner.

Based on these characteristics, the master’s
program evaluation provides a balance between theory and
practice, where the theory corresponds to the traditional
evaluation methods of individually executing exams to
students and the practical part brings a solid living practice
to the reality of a class by the development of real problem
based projects.

The theory part corresponds to 40% of the final
average:

− Each discipline module (basic, intermediate and

professional) generates an exam;

− Each discipline exam grade must be greater than or
equal to 5 (five).

− The final discipline average must be greater than or
equal to 7 (seven);

− By the end of the semester, the exams from each
module are summed up and dived by 3 in order to
generate the discipline individual average;

− This grade is individually applied to each student.

The collective part corresponds to 60% of the
final average:

− Each kind of evaluation has a specific grade;
− By the end of the semester, all grades are summed up

to generate the final collective average;
− This grade is collectively applied to all members of the

software factory.
− This grade has 60% of the weight replicated in all

seven disciplines individual grade.
The grading calculation can be summarized in the

following equation:

Therefore, it is observed that the student will only
know his final average after the end of all activities. Figure
1 represents the correlation of theses evaluation parts, and
each detailed evaluation will be described next.

J. Technol. Manag. Innov. 2008, Volume 3, Special Issue 1

23

Figure 1: Evaluation Method Representation

4.1 Theory Evaluation

This evaluation focuses on the disciplines, where

each module can have a configuration. The individual grade
of each module is composed of an Individual Evaluation,
which are evaluations realized by the end of each module,
with multiple questions, or subjective dissertation
elaborated with the support of Moodle1.

1 Moodle: A free Course Management System – CMS –
developed as open source software to help educators create
effective online learning communities
Available at http://www.moodle.org

4.2 Collective Evaluation

The grounding for the collective evaluation is

formed by practical activities executed by the software
factories teams. The abstraction levels depicted on Figure 2
represent the different models and data sources, from the
bottom of the pyramid, that are gathered to run a software
development project in the context of a software factories.
These levels of abstraction are intended to be covered by
the coordinated approach of evaluation, through looking
across the deliverables of the bottom of the pyramid,
examining the consistency among them.

J. Technol. Manag. Innov. 2008, Volume 3, Special Issue 1

24

Figure 2: Evaluation Abstraction Levels

This evaluation can be made through one of the
following resources:

1) Independent Software Factory Evaluation: in this

moment, the factory monitor collects all the evidences
and information from the factory and the project being
developed with the objective to analyze the progress
and continuity of the activities. In this moment, it is
analyzed whether the artifact was delivered on the time
agreed and the technical content of the product. For
this evaluation, a product checklist is used to guide the
grades given by each artifact and such checklist was
elaborated based on the process areas of CMMI-DEV
(2006).

2) Alignment Evaluation: this activity has to objective to
analyzed where or not all team members, in the same
factory, are aligned with the objectives and activities
being developed. The evaluation, then, consists of a
questionnaire that is distributed to all members of the
same team and collection of the results. The questions
are focused on the development of the factory and
business, and the results are given considering the
answers, whether they convert to the same view.

3) Client Satisfaction Evaluation: it is a set of questions

sent to the client that forms a grade, from 1 to 10, and
the client evaluates the team involvement. The result of
the process is a grade given by the client.

4) Status Report Evaluation: this is the moment when
the team realizes a formal presentation of the project
and the process being executed. The factory monitor

analyzes the factory presentation, project presentation,
milestones tracking, Strong and Weak points, metrics,
business related to the factory and consolidates the
results achieved so far.

4.4 Concluding Remarks

It is well understood the complex structure

presented by the evaluation method on the literature and,
therefore, such methodology is applied as a guideline to be
followed in order to achieve the desirable levels of
acceptance, for both the faculty and the students. The
method was defined taking the literature approach, and the
mapping between the method and the theory will be present
on the next Section.

5. Mapping the Evaluation Approach with the
Educational Theory

The approach based on individual and collective

evaluation with more emphasis on the collective part is
justified by the characteristics of PBL method and its
emphasis on practical experiences through the work in
group. In this kind of methodology, questions as the
instructional components involved in the evaluation process
(content, learning and equity principles), how the
evaluation process is applied (formative and summative)
and for one (post-graduation students) need to be defined
and systematized, allowing the definition of control’s points
and performance metrics for learning’s effectiveness
validation.

J. Technol. Manag. Innov. 2008, Volume 3, Special Issue 1

25

On the people’s point of view, the learning process
is entirely multidirectional in PBL. Students receive
guidance and support from his/her friends and peers,
besides the tutor and monitor. Specifically in a master
course, the students are actual professionals in the ICT
industry, therefore they have some maturity level and prior
experience of work that influences the learning process.
These influences demand for pedagogical components
associated with the profile of adult learners mentioned in

the Section 2.3, such as practices based on situations of the
real life, quick feedbacks and activities in group. In this
context, the practical experiences and professional maturity
of tutors and monitor are essential.

Analyzing the principles for useful assessment and
the formative and summative kind of evaluation, it´s
possible to do an association with the components of the
evaluation approach proposed in this article, as showed in
the Table 1.

 Instructional Components
kind of evaluation CONTENT LEARNING EQUITY
FORMATIVE Independent evaluation Status report Performance in 360o.

evaluation
SUMMATIVE Modules evaluation

(basic, intermediary and
professional)

Satisfaction client
evaluation

Alignment’s
questionnaires

Table 1: Association between evaluation approach and educational theory.

Here, the combination of kinds of evaluation and
principles proposes more control in the software factories
towards quality of its results (software and process) and,
consequently, quality of educational objectives.

On the formative perspective, the independent
evaluation is focus on the artifacts and partial products
generated in the software factories with the support and
consulting of the discipline’s tutors. This evaluation is
conducted by software factory monitor, who revised
project’s documents as project plan, user’s requirements
specification, project schedules, quality plan, among others,
and assure the publication of this information for the client.

About the learning component, the implementation
of status report allows investigating whether the project is
being conducted as planned, make sure the program and its
components are really operating according to the proposed
project plan. It is important to emphasize that this plan was
defined by each team in accordance with its client and
approved by software factory monitor. Therefore, any
change or adaptation of this plan needs to be negotiated
with the respective stakeholders.

The formative evaluation also include a
performance evaluation, step in which each team member
evaluate himself/herself and the others members of his/her
team. Questions about leader behavior, participation,
communication skills and commitment of the participants
are made with the objective of investigating the motivation
and professional maturity of students, offering the
opportunity to improve their performance.

On the summative perspective, individual module
evaluation is focused on the discipline-specific content
evaluation by the discipline tutor, but not isolated of the

practices in the software factories. In this step, the content
application is evaluated totally contextualized in the
specific project that each software factory is developing.
One example of such questions is “why or why not the
framework defined by Greenfield could be applied in your
software factory?”. The presence of subjective questions is
essential, which tests no solely the understanding of the
Greenfield´s framework but its applicability and
convenience for a real problem to solve. Additionally, an
alignment evaluation is ran with the objective of verifying
the knowledge uniformity among the team members with
respect to process and products produced. Finally, each
client evaluates the software factory results through
satisfaction criteria questionnaires, at least in two moments
in the project development.

6. Case Study

6.1. Scenario and Objectives

The case study was conducted with the main

objective to assess the implementation of the evaluation
method in the class of CESAR.edu master’s program. The
class was composed 19 students, with 26,84 of age average
and they were professional whose abilities were in the most
of the cases: test engineer and quality engineer. This
assessment happened from August 2007 to February 2008,
during the first stage of the master’s program of this class.

This class was the first one formed on CESAR.edu
program, and therefore, the first time that the evaluation
approach was being executed and needed to be improved
for the following classes. Accordingly, by the executing the

J. Technol. Manag. Innov. 2008, Volume 3, Special Issue 1

26

methodology, the master program general goals could also
be analyzed to indicate whether or the class would be
improving their technical abilities as a result of the support
and knowledge aggregated by the course.

The results will be assessed in group, not isolated
cases because the intention is to verify whether or not the
class is having progress.

6.2. Collected Data.

Based on this scenario, the results of the two types

of evaluation were collected and will be presented bellow.
This first graph represent an average of the

discipline grades, from each module, achieve by the
student. It is seen that, based on the average, all disciplines
modules grades were greater than 5 (the minimum grade
expected). Three, out of seven disciplines (Software

Factory, Project Management and Interoperability)
presented an evolution when comparing the grade from the
basic module with the grade from the professional module,
where the last one was greater than the first one. This
corresponds to 43% of the disciplines presented a progress
based on the theory part of the evaluation method. This
behavior is expected once the professional modules of each
discipline are much more complex when related to the basic
modules, and, consequently, requires a greater maturity of
the students. In the software factory discipline the
performance of the students is good, and it is due to the
work of the software factory monitor in continuously
assessing and observing the students and their projects. The
performance of the students in the disciplines Project
Management and Verification & Validation are good due to
the professional profile of most of the students – Test
engineer and Quality engineer.

In this second graph, the evolution of the

collective grading is presented, based on the execution of
six evaluations (3 Status Reports, 2 Independent and 1
Alignment) in each one of the four software factories. By
observing the lines of the graphics, it is seen that three out
of four software factories presented a final grade, on the last
status report, greater than the first independent grade. The

only software factory that presented a final grade smaller
than the first grade presented a behavior that was ahead of
the other factories during all other evaluations and his
collective final grade was higher than the others. It is also
observed that the final grade of the status report converge to
a range that varies in only 0,83 points (the higher grade was
9,50 and the lower grade was 8,63). The biggest progress
observed is from software factory 3, where the difference
from the first grade and the last grade is 3,67 points,
representing a progress of 73%.

J. Technol. Manag. Innov. 2008, Volume 3, Special Issue 1

27

7. Conclusion and Future Work

The deployment of evaluation process into the
context of the master program, during the process of
improving the maturity of such methodology, has presented
considerable results indicating positive remarks to the
software factories organized by the teams. By
implementing theory and practical evaluation, an explicit
improvement could be observed, and consequently brought
us a feedback about the program definition and its
effectiveness on group of students.

On the other hand, it was also important to
implement the students’ feedback to stabilize and improve
the evaluation method in order to maintain a continuous
improvement in the evaluation methodology. The goal of
implementing a method to appraise the results delivered by
some procedures, within projects, guided by processes and
products, could only be measured due to the designed
methodology and an ad-hoc manner could realize
misjudgment of the acquired results.

Nevertheless, the innovation of the approach
applied is recognized as something that can bring great
benefits to all members involved, but in order to achieve
that, caution is strictly needed to generate the most accurate
grading scales to the evaluation.

Besides these considerations, some future work
and improvement opportunities can be seen for this process:
− The elaboration of checklist to best guide the

individual evaluation of artifacts and to guide them on

their elaboration;
− The elaboration of checklist to best guide the software

factory process evaluation;
− The schedules of delivery required by the artifacts on

each discipline should be synchronized with the
evaluations made by the Software Factory Monitor;
and

− The tutor professors, who are specialist on each
discipline, should support the Software Factory
Monitor in evaluating the artifacts of their discipline,
so that the technical content could be best analyzed.

About authors:
M.Sc. Ana Paula Carvalho Cavalcanti: is a research
professor of the Educational Unit of C.E.S.A.R.edu and
Quality Engineer of the development projects from
C.E.S.A.R. Received her Bachelor degree from State
University of Ceará – UECE (Brazil) in 2005 and Master
degree from the Informatics Center of the Federal
University of Pernambuco – UFPE (Brazil) in 2008. With
over 5 years of experience in software development, her
major research interests focus on software quality, software
reuse processes and software development education.
Ph.D. Simone Santos is a coordinator of the Master course
in software engineering of the Educational Unit of
C.E.S.A.R.edu. She has been working at C.E.S.A.R since
1997, assuming diverse roles such as e-Business Unit
leader, Products Unit manager and innovative software
projects manager. Today, she is technical leader in

5,00
5,50
6,00
6,50
7,00
7,50
8,00
8,50
9,00
9,50

10,00

G
ra

de
s

Evaluation Type

Collective Grades Evolution

SF 1

SF 2

SF 3

SF 4

http://www.cesar.edu.br/
http://www.uece.br/
http://cin.ufpe.br/

J. Technol. Manag. Innov. 2008, Volume 3, Special Issue 1

28

C.E.S.A.R.edu coordinating the faculty and and also
advising students their master’s research work.

Ph.D. Maria da Conceição Moraes Batista received her
Bachelor degree, Master degree and PhD in computer
science from Informatics Center of the Federal University
of Pernambuco – UFPE (Brazil) in 1988, 2003, and 2008
respectively. Currently she is a regular professor of the
Educational Unit of C.E.S.A.R.edu with over 10 years of
software development. Her major research areas are
information quality, databases, Web systems and software
development education.

Ph.D. Jones Albuquerque has achieved his Bachelor
degree and Master degree from Informatics Center of the
Federal University of Pernambuco – UFPE (Brazil) in 1994
and 19997 and concluded his Ph.D in computer science
from the Federal University of Minas Gerais – UFMG
(2002). Nowadays he is a current professor of the Rural
Federal University of Pernambuco – UFPR and CESAR
collaborator. Has experience and interest in the research
areas of Computer Science, Software Engineer,
Mathematics Modeling, Software Process, Software
Quality, Computational Epidemiology and System
Modeling.

Ph.D. Silvio Meira has 23 years of experience in advising
and execution of scientific, technological and innovation
research, and created the Ph.D program from the
Informatics Center of the Federal University of
Pernambuco – UFPE (Brazil) and coordinated the post-
graduate program during 7 years. Besides that, he plays an
important role at C.E.S.A.R.edu as a chief scientist, and
recently has been considered by Info Exam Magazine as on
of the 100 most important people on information
technology in Brazil.

References

CMMI-DEV (2006), CMMI for Development, V1.2 model,
CMU/SEI-2006-TR-008. Software Engineering Institute.

Mahoney, M. S. (1990). The roots of software engineering.
Technical Report CWI Quarterly 3-4, Princeton University,
325-334.

Santos, S. C., Albuquerque, J. O., & Meira. S. R. L. (2007).
Integrating Concepts and Practices: PBL Applied to a
Master Course in Software Engineering. – White paper.

Sharma, S., Sugumaran, V., & Rajagopalan B. (2002). A
framework for creating hybrid-open source software
communities. Info Systems, 12:7-25.

Savery, J.R., Duffy, & T.M. (1995). Problem based
learning: An instructional model and its constructivist
framework, Educ Technology.; 35(5):31-7.

SWEBOK (2004). Software Engineering Body of
Knowledge. IEEE Computer Society.

Tynälä, P. (1999). Towards expert knowledge? A
comparison between a constructivist and a traditional
learning environment in the university, Int. J. Educ. Res.,
v.31, p.357-442.

Waters, R., & McCracken, M. (1997). Assessment and
Evaluation in Problem-Based Learning.

Westat, J. F., (2002). The 2002 User Friendly Handbook
for Project Evaluation. The National Science Foundation,
Contract REC 99-12175.

http://www.cesar.edu.br/
http://cin.ufpe.br/
http://www.cesar.edu.br/
http://cin.ufpe.br/
http://www.ufmg.br/
http://www.ufrpe.br/
http://www.cesar.org.br/
http://cin.ufpe.br/
http://www.cesar.edu.br/

